Research Article Trench's Perturbation Theorem for Dynamic Equations

نویسندگان

  • Martin Bohner
  • Stevo Stević
چکیده

We consider a nonoscillatory second-order linear dynamic equation on a time scale together with a linear perturbation of this equation and give conditions on the perturbation that guarantee that the perturbed equation is also nonoscillatory and has solutions that behave asymptotically like a recessive and dominant solutions of the unperturbed equation. As the theory of time scales unifies continuous and discrete analysis, our results contain as special cases results for corresponding differential and difference equations by William F. Trench.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic response determination of viscoelastic annular plates using FSDT – perturbation approach

In this paper, the transient response of a viscoelastic annular plate which has time-dependent properties is determined mathematically under dynamic transverse load. The axisymmetric conditions are considered in the problem. The viscoelastic properties obey the standard linear solid model in shear and the bulk behavior in elastic. The equations of motion are extracted using Hamilton’s principle...

متن کامل

Solving Fuzzy Impulsive Fractional Differential Equations by Homotopy Perturbation Method

In this paper, we study semi-analytical methods entitled Homotopy pertourbation method (HPM) to solve fuzzy impulsive fractional differential equations based on the concept of generalized Hukuhara differentiability. At the end first of Homotopy pertourbation method is defined and its properties are considered completely. Then econvergence theorem for the solution are proved and we will show tha...

متن کامل

Random differential inequalities and comparison principles for nonlinear hybrid random differential equations

 In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities  have been proved for an IVP of first order hybrid  random differential equations with the linear perturbation of second type. A comparison theorem is proved and  applied to prove the uniqueness of random solution for the considered perturbed random differential eq...

متن کامل

Design and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory

This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...

متن کامل

Asymptotic expansions and analytic dynamic equations

Time scales have been introduced in order to unify the theories of differential and difference equations and in order to extend these cases to many other so-called dynamic equations. In this paper we consider a linear dynamic equation on a time scale together with a perturbed equation. We show that, if certain exponential dichotomy conditions are satisfied, then for any solution of the perturbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008